avatar

目录
Differential Special Functions 微分特殊函数总结

Base on the class taught by Prof. Frabricant.
The textbook was Boas 《Mathematical Methods in the Physical Science》
回顾总结向,非初学教程。 For reference.

Legendre 勒让德

Legendre’s equation

(1x2)y2xy+l(l+1)y=0,x[1,1][(1x2)d2dx22xddx+l(l+1)]y=0\fbox{$(1-x^2)y''-2xy'+l(l+1)y = 0$},\quad x\in[-1,1]\\ \left[(1-x^2)\dfrac{d^2}{dx^2}-2x\dfrac{d}{dx}+l(l+1)\right]y = 0\\

Or, for my conventience to recall the “eigenvalue problem”, I should write the eigenvalue problem of Y(y)Y(y):

(1y2)YY2yYY=l(l+1)(1-y^2)\dfrac{Y''}{Y}-2y\dfrac{Y'}{Y} = -l(l+1)

Legendre Polynomials & properties

It’s not difficult if you use polynomials(y=a0+a1x+a2x2+a3x3y = a_0+a_1x+a_2x^2+a_3x^3\cdots) with finite terms to solve the Legendre’s equation:

an+2=(ln)(l+n+1)(n+2)(n+1)ana_{n+2} = -\dfrac{(l-n)(l+n+1)}{(n+2)(n+1)}a_n

The Legendre polynomials are:

P0(x)=1P1(x)=xP2(x)=12(3x21)\begin{aligned} P_0(x) & = 1\\ P_1(x) & = x\\ P_2(x) & = \frac{1}{2}(3x^2-1)\\ \cdots \end{aligned}


Rodrigues’ formula: an easy way to get the Legendre polynomials (the solution of the eigenvalue problem) directly.

Pl(x)=12ll!dldxl(x21)lP_l(x) = \dfrac{1}{2^ll!}\dfrac{d^l}{dx^l}(x^2-1)^l

In order to proove the Rodrigues’ formula, you only need to plug it into the original ordinary differential equation.


Generating function: A function whose factors of Taylor expansion are Legendre polynomials.

Φ(x,h)=(12xh+h2)1/2=P0(x)+hP1(x)+h2P2(x)+,h<1\Phi(x,h) = (1-2xh+h^2)^{-1/2} = P_0(x) + hP_1(x)+ h^2P_2(x)+\cdots,\quad |h|<1

In order to proove this, we need first know the fact below:

(1x2)2Φx22xΦx+h2h2(hΦ)=0(1-x^2)\dfrac{\partial^2\Phi}{\partial x^2} - 2x\dfrac{\partial\Phi}{\partial x}+h\dfrac{\partial^2}{\partial h^2}(h\Phi) = 0


Recursion Relations (Boas Chapter12 Page 570)

lPl(x)=(2l1)xPl1(x)(l1)Pl2(x)xPl(x)Pl1(x)=lPl(x)Pl(x)xPl1(x)=lPl1(x)lP_l(x) = (2l-1)xP_{l-1}(x) - (l-1)P_{l-2}(x)\\ xP_l'(x)-P'_{l-1}(x) = lP_l(x)\\ P'_l(x)-xP'_{l-1}(x) = lP_{l-1}(x)\\


Parity:

Pl(x)=(1)lPl(x)P_l(-x) = (-1)^lP_l(x)


Orthogonality:

11[Pl(x)]2dx=22l+1\int^1_{-1}[P_l(x)]^2dx = \dfrac{2}{2l+1}

Application in Physics

Associated Legendre function & Spherical harmonics 球谐函数

The equation

(1x2)y2xy+[l(l+1)m21x2]y=0,x[1,1]\fbox{$(1-x^2)y''-2xy + \left[l(l+1)-\dfrac{m^2}{1-x^2}\right]y = 0$},\quad x\in[-1,1]

Or, in the format of the eigenvalue problem of Y(y)Y(y), I should write it as:

(1y2)YY2yYYm21y2=l(l+1)(1-y^2)\dfrac{Y''}{Y}-2y\dfrac{Y'}{Y} - \dfrac{m^2}{1-y^2} = -l(l+1)

Associated Legendre functions & properties

For solving the associated legendre function, we first substitute y=(1x2)m/2uy = (1-x^2)^{m/2}u, so that we can eliminate m21x2\dfrac{m^2}{1-x^2} term. (but introduce a new term m(m+1)m(m+1))

(1x2)u2(m+1)xu+[l(l+1)m(m+1)]u=0differentiate(1x2)(u)2(m+2)x(u)+[l(l+1)(m+1)(m+2)]u=0(1-x^2)u''-2(m+1)xu'+[l(l+1)-m(m+1)]u = 0\\ \text{differentiate}\longrightarrow(1-x^2)(u')'' -2(m+2)x(u')'+[l(l+1)-(m+1)(m+2)]u' = 0

Equation doesn’t change if uu,mm+1u\rightarrow u, m\rightarrow m+1'. So, u=Plu=P_l is the solution for m=0m=0; PlP'_l is the solution for m=1m=1. In general:

um=dmdxmPl(x)Plm(x)=y=(1x2)m/2dmdxmPl(x)u^m = \dfrac{d^m}{dx^m}P_l(x)\\ P^m_l(x) = y = (1-x^2)^{m/2}\dfrac{d^m}{dx^m}P_l(x)

In Boas’ book, there’s no (1)m(-1)^m before the Plm(x)P^m_l(x). However, in the wikipedia, the polynomial is defined as Plm(x)=(1)m(1x2)m/2dmdxmPl(x)P^m_l(x) = (-1)^m(1-x^2)^{m/2}\dfrac{d^m}{dx^m}P_l(x).
Wikipedia: Associated Legendre polynomials


Rodrigues’ formula:

Plm(x)=12ll!(1x2)m/2dl+mdxl+m(x21)lP_l^m(x) = \dfrac{1}{2^ll!}(1-x^2)^{m/2}\dfrac{d^{l+m}}{dx^{l+m}}(x^2-1)^l


Parity:

Plm(x)=(1)l+mPlm(x)P^m_l(-x) = (-1)^{l+m}P_l^m(x)


Orthogonality:

11[Plm(x)]2dx=22l+1(l+m)!(lm)!\int^1_{-1}[P^m_l(x)]^2dx = \dfrac{2}{2l+1}\dfrac{(l+m)!}{(l-m)!}


Negative mm:

Plm(x)=(1)m(lm)!(l+m)!Plm(x)P_l^{-m}(x) = (-1)^m\dfrac{(l-m)!}{(l+m)!}P_l^m(x)

Note that PlmP^m_l and PlmP^{-m}_l are proportional rather than equal. This propertie can be got from the Rodrigues’ formula. (Rodrigues’ formula tells everything!) Besides, this relation doen’t care your definition of PlmP^m_l contains (1)m(-1)^m or not.

Associated Legendre functions \rightarrow Spherical harmonics

Wikipedia: Spherical harmonics.
Pay attention to the factor (1)m(-1)^m.

Ylm(θ,ϕ)=Plm(cosθ)eimϕ×(normalization factor)(normalization factor)=2l+14π(lm)!(l+m)!Y^m_l(\theta,\phi) = P_l^m(\cos\theta)e^{im\phi}\times\text{(normalization factor)}\\ \text{(normalization factor)} = \sqrt{\dfrac{2l+1}{4\pi}\dfrac{(l-m)!}{(l+m)!}}

It seems wikipedia’s definition of PlmP_l^m with (1)m(-1)^m is more popular. The table below adopts wikipedia’s definition.

Associated Legendre polynomials Spherical harmonics
P00(x)=1P_{0}^{0}(x)=1 Y00(θ,φ)=121πY_{0}^{0}(\theta,\varphi)=\dfrac{1}{2}\sqrt{\dfrac{1}{\pi}}
P11(x)=12P11(x)P_{1}^{-1}(x)=-\dfrac{1}{2}P_{1}^{1}(x) Y11(θ,φ)=1232πsinθeiφY_{1}^{-1}(\theta,\varphi)={1\over 2}\sqrt{3\over 2\pi} \, \sin\theta \, e^{-i\varphi}
P10(x)=xP_{1}^{0}(x)=x Y10(θ,φ)=123πcosθY_{1}^{0}(\theta,\varphi)={1\over 2}\sqrt{3\over \pi}\, \cos\theta
P11(x)=(1x2)1/2P_{1}^{1}(x)=-(1-x^2)^{1/2} Y11(θ,φ)=1232πsinθeiφY_{1}^{1}(\theta,\varphi)={-1\over 2}\sqrt{3\over 2\pi}\, \sin\theta\, e^{i\varphi}
P22(x)=124P22(x)P_{2}^{-2}(x)=\frac{1}{24}P_{2}^{2}(x) Y22(θ,φ)=14152πsin2θe2iφY_{2}^{-2}(\theta,\varphi)={1\over 4}\sqrt{15\over 2\pi} \, \sin^{2}\theta \, e^{-2i\varphi}
P21(x)=16P21(x)P_{2}^{-1}(x)=-\frac{1}{6}P_{2}^{1}(x) Y21(θ,φ)=12152πsinθcosθeiφY_{2}^{-1}(\theta,\varphi)={1\over 2}\sqrt{15\over 2\pi}\, \sin\theta\, \cos\theta\, e^{-i\varphi}
P20(x)=12(3x21)P_{2}^{0}(x)=\frac{1}{2}(3x^{2}-1) Y20(θ,φ)=145π(3cos2θ1)Y_{2}^{0}(\theta,\varphi)={1\over 4}\sqrt{5\over \pi}\, (3\cos^{2}\theta-1)
P21(x)=3x(1x2)1/2P_{2}^{1}(x)=-3x(1-x^2)^{1/2} Y21(θ,φ)=12152πsinθcosθeiφY_{2}^{1}(\theta,\varphi)={-1\over 2}\sqrt{15\over 2\pi}\, \sin\theta\,\cos\theta\, e^{i\varphi}
P22(x)=3(1x2)P_{2}^{2}(x)=3(1-x^2) Y22(θ,φ)=14152πsin2θe2iφY_{2}^{2}(\theta,\varphi)={1\over 4}\sqrt{15\over 2\pi}\, \sin^{2}\theta \, e^{2i\varphi}

Parity:

Ylm(πθ,π+ϕ)=(1)lYlm(θ,ϕ)Y^m_l(\pi-\theta,\pi+\phi) = (-1)^lY_l^m(\theta,\phi)

This proterties can be checked directly from the definition, no matter it contains (1)m(-1)^m or not.


Complex conjugate:

Ylm(θ,ϕ)=(1)mYlm(θ,ϕ){Y^m_l}^*(\theta,\phi) = (-1)^mY^{-m}_l(\theta,\phi)


Negative mm: The same as the complex conjugate properties above?

Application in physics: “angular wave function” of hydrogen atom

The formual below comes from the central potential 2-body problem. (Hydrogen atom problem) Y=Y(θ,ϕ)Y=Y(\theta,\phi) contains information of the wave function in different directions.

(2θ2+cotθθ+1sin2θ2ϕ2)Y=l(l+1)Y\left(\dfrac{\partial^2}{\partial \theta^2} + \cot\theta\dfrac{\partial}{\partial \theta} + \dfrac{1}{\sin^2\theta}\dfrac{\partial^2}{\partial \phi^2} \right)Y = -l(l+1)Y

First, we change the variable: x=cosθx = \cos\theta. So the first derivative is:

θ=xθx=sinθx\dfrac{\partial}{\partial\theta} = \dfrac{\partial x}{\partial\theta}\dfrac{\partial }{\partial x} = -\sin\theta\dfrac{\partial }{\partial x}

And the second derivative:

2θ2=sinθx(sinθx)=cosθx+sin2θ2x2\begin{aligned} \dfrac{\partial^2}{\partial\theta^2} & = -\sin\theta\dfrac{\partial }{\partial x} \left(-\sin\theta\dfrac{\partial }{\partial x}\right)\\ & = -\cos\theta\dfrac{\partial }{\partial x} + \sin^2\theta\dfrac{\partial^2}{\partial x^2} \end{aligned}

Then, the original eigenvalue equation becomes:

(sin2θ2x22cosθx+1sin2θ2ϕ2)Y=l(l+1)Y((1x2)2x22xx+11x22ϕ2)Y=l(l+1)Y\left(\sin^2\theta\dfrac{\partial^2}{\partial x^2} -2\cos\theta\dfrac{\partial }{\partial x} + \dfrac{1}{\sin^2\theta}\dfrac{\partial^2}{\partial \phi^2} \right)Y = -l(l+1)Y\\ \left((1-x^2)\dfrac{\partial^2}{\partial x^2} -2x\dfrac{\partial }{\partial x} + \dfrac{1}{1-x^2}\dfrac{\partial^2}{\partial \phi^2} \right)Y = -l(l+1)Y

Your can easily seperate Y=P(x)Φ(ϕ)Y = P(x)\Phi(\phi) and find ΦΦ=m2\dfrac{\Phi''}{\Phi} = -m^2 should be the eigenvalue equation for the new function, which will give you the general solution Φ(ϕ)=e±imϕ\Phi(\phi) = e^{\pm im\phi} (Usually, we neglect the solution eimϕe^{-im\phi}, it relates to our choice that in PlmP_l^m, mm can be negative). Then, the equation for P(x)P(x) becomes:

[(1x2)2x22xx+(l(l+1)m21x2)]P=0\left[(1-x^2)\dfrac{\partial^2}{\partial x^2} -2x\dfrac{\partial }{\partial x} + \left( l(l+1) - \dfrac{m^2}{1-x^2}\right) \right]P = 0

And this is the equation appeares at the begining of this chapter. We should get Plm(x)P_l^m(x) and YPlm(x)e±imϕY\propto P_l^m(x)e^{\pm im\phi}.

Bessel’s function 贝塞尔函数

Bessel’s equation

x2y+xy+(x2p2)y=0\fbox{$x^2y''+xy'+(x^2-p^2)y = 0$}

Or, in the form of eigenvalue problem:

y2YY+yYY+y2=p2y^2\dfrac{Y''}{Y}+ y\dfrac{Y'}{Y} + y^2 = p^2

Bessel function of the first kind and of the second kind (Neumann funcion): Jp&NpJ_p \& N_p

To solve the Bessel function y(x)y(x) we expand the yy form the order of xsx^s rather than x0x^0:

y=n=0anxn+sy = \sum^\infty_{n=0}a_nx^{n+s}

And finally, we will get two different, sometimes independent solution. One comes from s=ps = p, another comes from x=px = -p:

s=pJp(x)=n=0(1)nΓ(n+1)Γ(n+1+p)(x2)2n+ps=pJp(x)=n=0(1)nΓ(n+1)Γ(n+1p)(x2)2nps = p\longrightarrow J_p(x) = \sum^\infty_{n=0}\dfrac{(-1)^n}{\Gamma(n+1)\Gamma(n+1+p)}\left(\dfrac{x}{2}\right)^{2n+p}\\ s = -p\longrightarrow J_{-p}(x) = \sum^\infty_{n=0}\dfrac{(-1)^n}{\Gamma(n+1)\Gamma(n+1-p)}\left(\dfrac{x}{2}\right)^{2n-p}

The relation between JpJ_p and JpJ_{-p} should be like sin\sin and cos\cos rather than the same function with different eigenvalues. JpJ_p and JpJ_{-p} should be independent (true when pp is not an integer), but they are dependent when pp is an integer.

Althrough JpJ_p and JpJ_{-p} are theoratically sufficient, they are not good to be used to expand other functions. We introduce a new function Neumann function or Weber function which is a combination of JpJ_p and JpJ_{-p} to replace JpJ_{-p}:

Np(x)orYp(x)=cos(πp)Jp(x)Jp(x)sinπpN_p(x) \text{or} Y_p(x)= \dfrac{\cos(\pi p)J_p(x)-J_{-p}(x)}{\sin\pi p}

and general solution of Bessel’s equation is

y=AJp(x)+BNp(x)y = AJ_p(x)+BN_p(x)


Picture:

Bessel functions of the third kind (Hankel functions): Hp(1)&Hp(2)H_p^{(1)}\& H_p^{(2)}

Hp(1)(x)=Jp(x)+iNp(x)Hp(2)(x)=Jp(x)iNp(x)H_p^{(1)}(x) = J_p(x)+iN_p(x)\\ H_p^{(2)}(x) = J_p(x)-iN_p(x)

(Compare e±ix=cosx±isinx\mathrm{e}^{\pm ix} = \cos x\pm i\sin x.)

Application in physics

Bessel function family 贝塞尔函数族

“General Bessel differential equation”

The differential equation:

y+12axy+[(bcxc1)2+a2p2c2x2]y=0\fbox{$ y'' +\dfrac{1-2a}{x}y' +\left[(bcx^{c-1})^2 + \dfrac{a^2-p^2c^2}{x^2}\right]y =0 $}

or, in the eigenvalue problem form:

y2YY+y(12a)YY+(bcyc1)2y2=p2c2a2y^2\frac{Y''}{Y} + y(1-2a)\frac{Y'}{Y} + (bcy^{c-1})^2y^2 = p^2c^2-a^2

has the solution:

y=xa[AJp(bxc)+BNp(bxc)]xaZp(bxc)y = x^a\left[AJ_p(bx^c)+BN_p(bx^c)\right]\equiv x^aZ_p(bx^c)


For a special case, when a=c=0a = c =0,

y2YY+yYY+b2y2=p2y^2\dfrac{Y''}{Y} + y\dfrac{Y'}{Y} + b^2y^2 = p^2

has the solutions Jp(by)J_p(by) and Np(by)N_p(by).

Modified or hyperbolic Bessel functions: Ip&KpI_p\& K_p(双曲贝塞尔)

Start from the “generalbessel function”, if I choose b=ib=i, the equation and the solution become:

x2y+xy(x2+p2)y=0\fbox{$x^2y''+xy'-(x^2+p^2)y = 0 $}

or in the eigenvalue form:

y2YY+yYYy2=p2y^2\dfrac{Y''}{Y}+y\dfrac{Y'}{Y}-y^2 = p^2

has the solution Zp(ix)Z_p(ix). However, as usual, the ordinarily used solution are a bit different from Jp(ix)J_p(ix) and Np(ix)N_p(ix):

Ip(x)=ipJp(ix)Kp(x)=π2ip+1Hp(1)(ix)I_p(x) = i^{-p}J_p(ix)\\ K_p(x) = \dfrac{\pi}{2}i^{p+1}H_p^{(1)}(ix)


Analogy Bessel/Hyperbolic Bessel with trignometry/hyperbolic trig

  1. Bessel/Hyperbolic Bessel:

x2y+xy+x2y=p2yx2y+xyx2=p2yx^2y''+xy'+x^2y = p^2y\quad\longrightarrow\quad x^2y''+xy'-x^2 = p^2y

  1. Trignometric/Hyperbolic Trig:

y+y=0yy=0y''+y =0\quad\longrightarrow\quad y''-y=0

  1. Bessel/Hyperbolic Bessel:

Ip(x)=ipJp(ix),Kp(x)=π2ip+1Hp(1)(ix)\longrightarrow I_p(x) = i^{-p}J_p(ix),\quad K_p(x) = \dfrac{\pi}{2}i^{p+1}H_p^{(1)}(ix)

  1. Trignometric/Hyperbolic Trig:

sinhx=isin(ix),coshx=cos(ix)\longrightarrow \sinh x = -i\sin(ix),\quad \cosh x = \cos(ix)


pictures:

Spherical Bessel functions: jn&ynj_n\& y_n; hn(1)&hn(2)h_n^{(1)}\& h_n^{(2)}(球贝塞尔)

When solving the Helmholtz equation in spherical coordinates by separation of variables, the radial equation has the form:

x2y+2xy+(x2n(n+1))y=0\fbox{$ x^2y''+2xy'+(x^2-n(n+1))y = 0 $}

or, in the form of eigenvalue problem:

y2YY+2yYY+y2=n(n+1)y^2\dfrac{Y''}{Y} + 2y\dfrac{Y'}{Y} + y^2 = n(n+1)

The two linearly independent solutions to this equation are called the spherical Bessel functions jnj_n and yny_n, and are related to the ordinary Bessel functions JnJ_n and YnY_n by

jn(x)=π2xJn+12(x)yn(x)=π2xYn+12(x)=(1)n+1π2xJn12(x)j_n(x) = \sqrt{\frac{\pi}{2x}} J_{n+\frac{1}{2}}(x) \\ y_n(x) = \sqrt{\frac{\pi}{2x}} Y_{n+\frac{1}{2}}(x) = (-1)^{n+1} \sqrt{\frac{\pi}{2x}} J_{-n-\frac{1}{2}}(x)

And we can also define the hn(1,2)h_n^{(1,2)} as the Hankel functions:

hn(1)=jn(x)+iyn(x)hn(2)=jn(x)iyn(x)h_n^{(1)} = j_n(x)+iy_n(x)\\ h_n^{(2)} = j_n(x)-iy_n(x)


Rodrigues formuals:

jn(x)=(x)n(1xddx)nsinxxyn(x)=(x)n(1xddx)ncosxxj_n(x)= (-x)^n \left(\frac{1}{x}\frac{d}{dx}\right)^n\,\frac{\sin x}{x}\\ y_n(x) = -(-x)^n \left(\frac{1}{x}\frac{d}{dx}\right)^n\,\frac{\cos x}{x}

Notice that if we set pp the subscripit of the Bessel function p=(2n+1)/2=n+1/2p = (2n+1)/2 = n+1/2,the we get jnj_n and yny_n which can be expressed in terms of sinx\sin x, cosx\cos x and powers of xx.


Important notes:

Spherical Bessel function can be expressed by elementary functions!!

jn(x)=π2xJ(2n+1)/2(x)=xn(1xddx)n(sinxx)j_{n}(x)=\sqrt{\frac{\pi}{2 x}} J_{(2 n+1) / 2}(x)=x^{n}\left(-\frac{1}{x} \frac{d}{d x}\right)^{n}\left(\frac{\sin x}{x}\right)

yn(x)=π2xY(2n+1)/2(x)=xn(1xddx)n(cosxx)y_{n}(x)=\sqrt{\frac{\pi}{2 x}} Y_{(2 n+1) / 2}(x)=-x^{n}\left(-\frac{1}{x} \frac{d}{d x}\right)^{n}\left(\frac{\cos x}{x}\right)

j0(x)=sinxxj1(x)=sinxx2cosxx\begin{aligned} j_{0}(x) &=\frac{\sin x}{x} \\ j_{1}(x) &=\frac{\sin x}{x^{2}}-\frac{\cos x}{x} \end{aligned}


Pictures:

Kelvin functions

Airy functions: Ai&Bi\mathrm{Ai}\&\mathrm{Bi}

Airy differential equation is

yxy=0\fbox{$y'' -xy = 0$}

In the form of eigenvalue problem:

YYy=0\dfrac{Y''}{Y}-y = 0


It also satisfies the general form of the Bessel differential equation, and the solution is:

xZ1/3(23ix3/2)\sqrt{x}Z_{1/3}(\frac{2}{3}ix^{3/2})

It can be writtern in the combination of J1/3J_{1/3} and N1/3N_{1/3}. Since the parameter contains ii, We can use hyperbolic Bessel instead:

Ai(x)=1πx3K1/3(23x3/2)Bi(x)=x3[I1/3(23x3/2)+I1/3(23x3/2)]\begin{aligned} \mathrm{Ai}(x) & = \dfrac{1}{\pi}\sqrt{\dfrac{x}{3}}K_{1/3}\left(\dfrac{2}{3}x^{3/2}\right)\\ \mathrm{Bi}(x)& = \sqrt{\dfrac{x}{3}}\left[I_{-1/3}\left(\dfrac{2}{3}x^{3/2}\right) + I_{1/3}\left(\dfrac{2}{3}x^{3/2}\right)\right] \end{aligned}


Picture:

Comparision of differential equations for Bessel Functions

Name Differential euation
Original Bessel y2YY+yYY+y2=p2y^2\dfrac{Y''}{Y}+ y\dfrac{Y'}{Y} + y^2 = p^2
General Bessel y2YY+y(12a)YY+(bcyc1)2y2=p2c2a2y^2\dfrac{Y''}{Y} + y(1-2a)\dfrac{Y'}{Y} + (bcy^{c-1})^2y^2 = p^2c^2-a^2
Hyperbolic Bessel y2YY+yYYy2=p2y^2\dfrac{Y''}{Y}+y\dfrac{Y'}{Y}-y^2 = p^2
Spherical Bessel y2YY+2yYY+y2=n(n+1)y^2\dfrac{Y''}{Y} + 2y\dfrac{Y'}{Y} + y^2 = n(n+1)
Kelvin YY+1yYY=i\dfrac{Y''}{Y} +\dfrac{1}{y}\dfrac{Y'}{Y} = i
Airy YYy=0\dfrac{Y''}{Y}-y = 0

Hermit function 厄米方程

Laguerre function 劳厄方程

The Equation

Lagueere polynomials are solution of the differential equation:

xy+(1x)y+ny=0\fbox{$ xy''+(1-x)y'+ny = 0 $}

or, in the eigenvalue form:

yYY+(1y)YY=ny\dfrac{Y''}{Y} + (1-y)\dfrac{Y'}{Y} = -n

Laguerre polynomials

Polynomial means we can expand the solution in a0x0+a1x1+a2x2+a_0x^0 + a_1x^1 + a_2x^2+\cdots. And the answer is:

Ln(x)=1nx+n(n1)2!x22!n(n1)2!x22!n(n1)(n2)3!x33!++(1)nxnn!=m=0n(1)m(nm)xmm!\begin{aligned} L_n(x) & = 1 - nx + \dfrac{n(n-1)}{2!}\dfrac{x^2}{2!}\dfrac{n(n-1)}{2!}\dfrac{x^2}{2!} - \dfrac{n(n-1)(n-2)}{3!}\dfrac{x^3}{3!} +\cdots+\dfrac{(-1)^nx^n}{n!}\\ & = \sum^n_{m=0}(-1)^m{\binom n m}\dfrac{x^m}{m!} \end{aligned}

Warning: some author may omit the 1/n!1/n! factor.

First 3 terms of Lagueere polynomials are:

L0(x)=1L1(x)=1xL3(x)=12x+x2/2\begin{aligned} L_0(x) & = 1\\ L_1(x) & = 1-x\\ L_3(x) & = 1-2x+x^2/2 \end{aligned}


Rodrigues formula:

Ln(x)=1n!exdndxn(xnex)L_n(x) = \dfrac{1}{n!}e^x\dfrac{d^n}{dx^n}(x^ne^{-x})


Orthogonality:

0exLn(x)Lk(x)dx=δnk\int^\infty_0e^{-x}L_n(x)L_k(x)dx = \delta_{nk}

Attention that the polynomials are orthogonal on (0,)(0,\infty) with respect to the weight function exe^{-x}. We can also say that ex/2Ln(x)e^{x/2}L_n(x) are orthogonal.


Generating function:

Φ(x,h)=exh/(1h)1h=n=0Ln(x)hn\Phi(x,h) = \dfrac{e^{-xh/(1-h)}}{1-h} = \sum^\infty_{n=0}L_n(x)h^n


Recursion relations:

Associated Laguerre function 伴随劳厄方程

Differential equaion

xy+(k+1x)y+ny=0\fbox{$ xy''+(k+1-x)y'+ny = 0 $}

or in the form of the eigenvalue problem:

yYY+(k+1y)YY=n.y\dfrac{Y''}{Y}+(k+1-y)\dfrac{Y'}{Y} = -n.

Associated Laguerre polynomials

Actually, the associated Laguerre polynomials are the Derivatives of the Laguerre polynomials. The new polynomials are defined as:

Lnk(x)=(1)kdkdxkLn+k(x)L_n^k(x) = (-1)^k\dfrac{d^k}{dx^k}L_{n+k}(x)

And all of the properties of the associated Laguerre polynomial could be prooved by using the drivation of Laguerre polynomials.

Warning, again, the formulas and properties here and below will be different if some author omit 1/n!1/n! factor before LnL_n.


Rodrigues formula:

Lnk(x)=xkexn!dndxn(xn+kex)L^k_n(x) = \dfrac{x^{-k}e^x}{n!}\dfrac{d^n}{dx^n}(x^{n+k}e^{-x})


Orthogonality:

0xkexLnk(x)Lmk(x)dx=δnm(n+k)!n!\int^\infty_0x^ke^{-x}L_n^k(x)L_m^k(x)dx = \delta_{nm}\dfrac{(n+k)!}{n!}

Note that now the weight function becomes to xkexx^ke^{-x}.

p.s. This orthogonality is not used to normalize the function of hydrogen atom

Application in physics: Radial wave function of hydrogen atom

22m1r2r2(rR)+[l(l+1)22mr2e2r]R=ER-\dfrac{\hbar^2}{2m}\dfrac{1}{r}\dfrac{\partial^2}{\partial r^2}\left(rR\right) + \left[\dfrac{l(l+1)\hbar^2}{2mr^2} - \dfrac{e^2}{r}\right]R = ER

STEP 1, subsititute R(r)R(r) by:

R(r)=u(r)rR(r) = \dfrac{u(r)}{r}

Then, the differential equation becomes:

22m2r2u+[l(l+1)22mr2e2r]u=Eu-\dfrac{\hbar^2}{2m}\dfrac{\partial^2}{\partial r^2}u + \left[\dfrac{l(l+1)\hbar^2}{2mr^2} - \dfrac{e^2}{r}\right]u = Eu


STEP 2 is to change some variables to normalize the radius and the energy. ρra0\rho\equiv \dfrac{r}{a_0}, where a0a_0 is the Bohr radius which is defined as:

a02me2a_0 \equiv \dfrac{\hbar^2}{me^2}

ρ=ra022m2a02ρ2u+[l(l+1)22ma02ρ2e2a0ρ]u=Eu[me4222ρ2+l(l+1)me422ρ2me42ρ]u=Eu[2ρ2l(l+1)ρ2+2ρ]u=Eme422u\rho = \dfrac{r}{a_0}\longrightarrow -\dfrac{\hbar^2}{2m}\dfrac{\partial^2}{a_0^2\partial \rho^2}u + \left[\dfrac{l(l+1)\hbar^2}{2ma_0^2\rho^2} - \dfrac{e^2}{a_0\rho}\right]u = Eu\\ \left[-\dfrac{me^4}{2\hbar^2}\dfrac{\partial^2}{\partial \rho^2} + \dfrac{l(l+1)me^4}{2\hbar^2\rho^2} - \dfrac{me^4}{\hbar^2\rho}\right]u = Eu\\ \left[\dfrac{\partial^2}{\partial \rho^2} - \dfrac{l(l+1)}{\rho^2} + \dfrac{2}{\rho}\right]u = -\dfrac{E}{\dfrac{me^4}{2\hbar^2}}u

And we can define the Rydberg energy:

EIme422E_\mathrm{I} \equiv \dfrac{me^4}{2\hbar^2}

and we have e2=2a0Ei,22m=a02EIe^2 = 2a_0E_\mathrm{i}, \dfrac{\hbar^2}{2m} = a_0^2E_\mathrm{I}.

[2ρ2l(l+1)ρ2+2ρ]u=EEIu[2ρ2l(l+1)ρ2+2ρ]u=λ2u\left[\dfrac{\partial^2}{\partial \rho^2} - \dfrac{l(l+1)}{\rho^2} + \dfrac{2}{\rho}\right]u = -\dfrac{E}{E_\mathrm{I}}u\\ \left[\dfrac{\partial^2}{\partial \rho^2} - \dfrac{l(l+1)}{\rho^2} + \dfrac{2}{\rho}\right]u = \lambda^2u

Where, λ\lambda is defined as λEEI\lambda\equiv\sqrt{-\dfrac{E}{E_\mathrm{I}}}. Note that E<0E<0.


STEP 3. Not enough yet. Another substitution is needed in order to eliminate the term of λ2u\lambda^2u:

u(ρ)y(ρ)eλρu(\rho) \equiv y(\rho)e^{-\lambda\rho}

and we get:

dudρ=dydρeλρλyeλρd2udρ2=d2ydρ2eλρ2λdydρeλρ+λ2yeλρ\dfrac{du}{d\rho} = \dfrac{dy}{d\rho}e^{-\lambda\rho}-\lambda ye^{-\lambda\rho}\\ \dfrac{d^2u}{d\rho^2} = \dfrac{d^2y}{d\rho^2}e^{-\lambda\rho} - 2\lambda\dfrac{dy}{d\rho}e^{-\lambda\rho}+\lambda^2 ye^{-\lambda\rho}

So the differential equation now becomes:

d2ydρ22λdydρ+[2ρl(l+1)ρ2]y=0\dfrac{d^2y}{d\rho^2} - 2\lambda\dfrac{dy}{d\rho} + \left[\dfrac{2}{\rho}-\dfrac{l(l+1)}{\rho^2}\right]y = 0


STEP 4 is to eliminate the term of l(l+1)ρ2y\dfrac{l(l+1)}{\rho^2}y. Do the substitution:

y(ρ)=ρsq(ρ)=ρl+1q(ρ)y(\rho) = \rho^{s}q(\rho) = \rho^{l+1}q(\rho)

and we get

y=(l+1)ρlq+ρl+1qy=l(l+1)ρl1q+2(l+1)ρlq+ρl+1qy' = (l+1)\rho^lq+\rho^{l+1}q'\\ y'' = l(l+1)\rho^{l-1}q + 2(l+1)\rho^lq'+\rho^{l+1}q''

Actually, ss can also choose s=ls = -l, but the solution will be diverge, so we neglect this choice.

So the differential equation becomes:

ρq+[2(l+1)2λρ]q+[22λ(l+1)]q=0ρqq+[2(l+1)2λρ]qq=[22λ(l+1)]\rho q'' + [2(l+1)-2\lambda \rho]q' + [2-2\lambda(l+1)]q = 0\\ \rho\dfrac{q''}{q} + [2(l+1)-2\lambda \rho]\dfrac{q'}{q} = -[2-2\lambda(l+1)]


STEP 5: We are very close to the final answer. We just need to take care the factor 2λρqq-2\lambda \rho\dfrac{q'}{q}. We can adjust the ρ\rho:

ξ=2λρ,ρ=ξ2λ\xi = 2\lambda\rho,\quad \rho = \dfrac{\xi}{2\lambda}

The differential equation then becomes:

2λξd2qdξ2+(2λ)[2(l+1)ξ]dqdξ=[22λ(l+1)]ξd2qdξ2+[2(l+1)ξ]dqdξ=22λ(l+1)2λξd2qdξ2+[(2l+1)+1ξ]dqdξ=[1λ(l+1)]2\lambda\xi\dfrac{d^2q}{d\xi^2} + (2\lambda)[2(l+1)-\xi]\dfrac{dq}{d\xi} = -[2-2\lambda(l+1)]\\ \xi\dfrac{d^2q}{d\xi^2} + [2(l+1)-\xi]\dfrac{dq}{d\xi} = -\dfrac{2-2\lambda(l+1)}{2\lambda}\\ \xi\dfrac{d^2q}{d\xi^2} + [(2l+1)+1-\xi]\dfrac{dq}{d\xi} = -\left[\dfrac{1}{\lambda}-(l+1)\right]


Compare with the function of associated Laguerre:

yYY+(k+1x)YY=ny\dfrac{Y''}{Y}+(k+1-x)\dfrac{Y'}{Y} = -n

We set

{k=2l+1nr=1λ(l+1)\begin{cases} k = 2l+1\\ n_r = \dfrac{1}{\lambda}-(l+1) \end{cases}

Where nrn_r is called as the “raidal quantum number”, not the principal quantum number. We can see λ=1nr+l+11n\lambda = \dfrac{1}{n_r+l+1}\equiv\dfrac{1}{n}, and define n=nr+l+1n = n_r+l+1 which is the principal quantum number. We know that nr0n_r\geq 0, so the choices examples for nn and nrn_r are:

n=1:l=0,nr=0n=2:l=0,nr=1l=1,nr=0n=3:l=0,nr=2l=1,nr=1l=2,nr=0\begin{aligned} n = 1 : & l=0, & n_r = 0 \\ n = 2 : & l=0, & n_r = 1 \\ & l=1, & n_r = 0 \\ n = 3 : & l=0, & n_r = 2 \\ & l=1, & n_r = 1 \\ & l=2, & n_r = 0 \end{aligned}

So that:

nr=nl1n_r = n-l-1

And the solution for the q(ξ)q(\xi) is:

q(ξ)=Lnrk(ξ)=Lnl12l+1=qnl(ξ)q(\xi) = L^k_{n_r}(\xi) = L^{2l+1}_{n-l-1} = q_{nl}(\xi)


Finally, let’s go over the whole transmission during the derivation:

R(r)=u(r)r=y(ρ)eλρr=y(ρ)eλr/a0r=ρl+1q(ρ)eλr/a0r=(r/a0)l+1q(ρ)eλr/a0r=(r/a0)l+1q(ξ)eλr/a0r=(r/a0)l+1eλr/a0rq(ξ=2λρ=2λra0)=(r/a0)l+1eλr/a0rq(2λra0)Rnl(r)=(r/a0)l+1er/na0rqnl(2rna0)=(r/a0)l+1er/na0rLnl12l+1(2rna0)\begin{aligned} R(r) & = \dfrac{u(r)}{r}\\ & = \dfrac{y(\rho)e^{-\lambda\rho}}{r}\\ & = \dfrac{y\left(\rho\right)e^{-\lambda r/{a_0}}}{r}\\ & = \dfrac{\rho^{l+1}q(\rho)e^{-\lambda r/{a_0}}}{r}\\ & = \dfrac{(r/a_0)^{l+1}q(\rho)e^{-\lambda r/{a_0}}}{r}\\ & = \dfrac{(r/a_0)^{l+1}q(\xi)e^{-\lambda r/{a_0}}}{r}\\ & = \dfrac{(r/a_0)^{l+1}e^{-\lambda r/{a_0}}}{r}q\left(\xi = 2\lambda\rho = \frac{2\lambda r}{a_0}\right)\\ & = \dfrac{(r/a_0)^{l+1}e^{-\lambda r/{a_0}}}{r}q\left(\frac{2\lambda r}{a_0}\right)\\ R_{nl}(r) & = \dfrac{(r/a_0)^{l+1}e^{-r/n{a_0}}}{r}q_{nl}\left(\frac{2r}{na_0}\right)\\ & = \dfrac{(r/a_0)^{l+1}e^{-r/n{a_0}}}{r}L^{2l+1}_{n-l-1}\left(\frac{2r}{na_0}\right)\\ \end{aligned}

Rnl(r)=rla0l+1er/na0Lnl12l+1(2rna0)\fbox{$R_{nl}(r) = \dfrac{r^l}{a_0^{l+1}}e^{-r/n{a_0}}L^{2l+1}_{n-l-1}\left(\frac{2r}{na_0}\right)$}

Attention. the normalization of the solution is not the orthogonality above. We should use

0xk+1ex[Lnk(x)]2dx=(2n+k+1)(n+k)!n!\int^\infty_0x^{k+1}e^{-x}[L^k_n(x)]^2dx = (2n+k+1)\dfrac{(n+k)!}{n!}

Confluent hypergeometric function 合流超几何函数

The Kummer-Laplace Differential Equation

xy+(cx)yay=0\fbox{$ xy''+(c-x)y-ay = 0 $}

or the eigenvalue problem form:

yYY+(cy)YY=ay\dfrac{Y''}{Y} + (c-y)\dfrac{Y'}{Y} = a

Confluent hypergeometric functions F(a,c;x)&G(a,c;x)F(a,c;x)\& G(a,c;x)

The solution which is regular at the origin is called the confluent hypergeometric function and denoted as F(a,c;x)F(a, c; x) or 1F1(a,c;x){}_1F_1(a, c; x). Sometimes it is also called the degenerate hypergeometric function, because it can be obtained as a limiting case of a more general Gauss hypergeometric function.

Comparision of each differential special function 对比与总结

Name differential equation
Legendre (1y2)YY2yYY=l(l+1)(1-y^2)\dfrac{Y''}{Y}-2y\dfrac{Y'}{Y} = -l(l+1)
Associated Legendre (1y2)YY2yYYm21y2=l(l+1)(1-y^2)\dfrac{Y''}{Y}-2y\dfrac{Y'}{Y} - \dfrac{m^2}{1-y^2} = -l(l+1)
Bessel y2YY+yYY+y2=p2y^2\dfrac{Y''}{Y}+ y\dfrac{Y'}{Y} + y^2 = p^2
Hermite YY2yYY=2n\dfrac{Y''}{Y} -2y\dfrac{Y'}{Y} = -2n
Laguerre yYY+(1y)YY=ny\dfrac{Y''}{Y}+(1-y)\dfrac{Y'}{Y} = -n
Associated Laguerre yYY+(k+1y)YY=ny\dfrac{Y''}{Y}+(k+1-y)\dfrac{Y'}{Y} = -n
Confluent hypergeometric function yYY+(cy)YY=ay\dfrac{Y''}{Y} + (c-y)\dfrac{Y'}{Y} = a
文章作者: HuangXiaoKai
文章链接: 2020/03/04/Differential Special Functions 微分特殊函数总结/
版权声明: 本博客所有文章除特别声明外,均采用 CC BY-NC-SA 4.0 许可协议。转载请注明来自 篁竹水声de公共空间
打赏
  • 微信
    微信
  • 支付宝
    支付宝

评论